Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks

نویسندگان

  • Cecilia Lundin
  • Matthew North
  • Klaus Erixon
  • Kevin Walters
  • Dag Jenssen
  • Alastair S. H. Goldman
  • Thomas Helleday
چکیده

Homologous recombination (HR) deficient cells are sensitive to methyl methanesulfonate (MMS). HR is usually involved in the repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae implying that MMS somehow induces DSBs in vivo. Indeed there is evidence, based on pulsed-field gel electrophoresis (PFGE), that MMS causes DNA fragmentation. However, the mechanism through which MMS induces DSBs has not been demonstrated. Here, we show that DNA fragmentation following MMS treatment, and detected by PFGE is not the consequence of production of cellular DSBs. Instead, DSBs seen following MMS treatment are produced during sample preparation where heat-labile methylated DNA is converted into DSBs. Furthermore, we show that the repair of MMS-induced heat-labile damage requires the base excision repair protein XRCC1, and is independent of HR in both S.cerevisiae and mammalian cells. We speculate that the reason for recombination-deficient cells being sensitive to MMS is due to the role of HR in repair of MMS-induced stalled replication forks, rather than for repair of cellular DSBs or heat-labile damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apn1 and Apn2 endonucleases prevent accumulation of repair-associated DNA breaks in budding yeast as revealed by direct chromosomal analysis

Base excision repair (BER) provides relief from many DNA lesions. While BER enzymes have been characterized biochemically, BER functions within cells are much less understood, in part because replication bypass and double-strand break (DSB) repair can also impact resistance to base damage. To investigate BER in vivo, we examined the repair of methyl methanesulfonate (MMS) induced DNA damage in ...

متن کامل

Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae.

The MRE11, RAD50, and XRS2 genes of Saccharomyces cerevisiae are involved in the repair of DNA double-strand breaks (DSBs) produced by ionizing radiation and by radiomimetic chemicals such as methyl methanesulfonate (MMS). In these mutants, single-strand DNA degradation in a 5' to 3' direction from DSB ends is reduced. Multiple copies of the EXO1 gene, encoding a 5' to 3' double-strand DNA exon...

متن کامل

Methyl Methanesulfonate

Bacillus subtilis was not inactivated and was able to replicate even though approximately 3 X 104 methyl groups added by methyl methanesulfonate (MMS) were bound to the deoxyribonucleic acid (DNA) of each organism. No significant loss of methyl groups from the DNA occurred for several generations upon incubation of methylated wild-type or MMS-sensitive cells. Single-strand breaks were not obser...

متن کامل

Alkylation Base Damage Is Converted into Repairable Double-Strand Breaks and Complex Intermediates in G2 Cells Lacking AP Endonuclease

DNA double-strand breaks (DSBs) are potent sources of genome instability. While there is considerable genetic and molecular information about the disposition of direct DSBs and breaks that arise during replication, relatively little is known about DSBs derived during processing of single-strand lesions, especially for the case of single-strand breaks (SSBs) with 3'-blocked termini generated in ...

متن کامل

Postreplication repair of alkylation damage to DNA of mammalian cells in culture.

Incorporation and alkaline sucrose sedimentation studies of DNA from mouse L-cells have demonstrated the following effects of N-methyl-N-nitrosourea (MNU) and methyl methanesulfonate (MMS). Increasing the concentration of both agents increases the number of single-strand breaks or alkali-labile lesions of existing DNA, which affects the incorporation of [3H]thymidine into DNA by reducing its re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005